
UNIVERSITY OF WASHINGTON

Control Structures
Adam Kuczynski

UNIVERSITY OF WASHINGTON

Control structures allow you to control the flow of your R program (script)
and are critical to programming in R

There are three components of a program's flow:

1. Sequential: the order in which the R code is executed

"do this first, then that"

2. Selection: which path of an algorithm R will execute based on certain
criteria

"do that, but only if this is TRUE

if /else
switch

3. Iteration: how many types should a certain algorithm be repeated?

"do this 100 times, then move on to that"

for , while , repeat
break , next

2 / 54

UNIVERSITY OF WASHINGTON

birthday <- "2002-05-20"

[1] "Age: 19 (Do not sell)"

birthday <- "1970-12-15"

[1] "Age: 50 (Sell)"

if() otherwise else
if() and else statements allow you to conditionally execute code

For example, write a program that tells a cashier whether or not they should
sell alcohol to a customer. The cashier enters the customer's birthday into
their POS, which needs to display the appropriate message:

Calculate age
age <- as.numeric(difftime(Sys.time(), as.Date(birthday))) / 365

if(age >= 21){
 print(paste("Age:", floor(age), "(Sell)"))
} else {
 print(paste("Age:", floor(age), "(Do not sell)"))
}

3 / 54

UNIVERSITY OF WASHINGTON

if() statements do not need an else statement, if there is no alternative

number <- 31

If number is even
if(number %% 2 == 0){
 print("Congratulations! It's an even number.")
}

You can also have multiple if/else statements in a row, if there are more
than two outcomes

number <- 27

if(number %% 2 == 0){
 print("Congratulations! It's an even number!")
} else if(number %% 3 == 0){
 print("Your number is divisible by 3")
} else {
 print("Your number is not even or divisible by 3")
}

[1] "Your number is divisible by 3"

4 / 54

UNIVERSITY OF WASHINGTON

if(359){
 print("This code ran")
}

[1] "This code ran"

if("TRUE"){
 print("This code ran")
}

[1] "This code ran"

The statements evaluated by if() always need to return a single TRUE or
FALSE value

if(TRUE){
 print("This will always run")
} else {
 print("This will **never** run")
}

[1] "This will always run"

if("Character"){
 print("Take the course")
}

Error in if ("Character") {: argument is not interpretable as logical

Be careful, though! R will coerce values inside if() in unexpected ways:

5 / 54

UNIVERSITY OF WASHINGTON

age <- 36
hasmoney <- FALSE

[1] "Sell when they have money!"

age <- 12
hasmoney <- TRUE

[1] "Do not sell"

You can have multiple conditions inside an if() statement as well with else
if()

age <- 36
hasmoney <- TRUE

if(age > 21 && hasmoney){
 print("Sell!")
} else if(age > 21 && !hasmoney){ # of age, but no money
 print("Sell when they have money!")
} else {
 print("Do not sell")
}

[1] "Sell!"

6 / 54

UNIVERSITY OF WASHINGTON

ifelse() if very useful inside a
dataframe to transform your data.

Remember the uwclinspsych
dataframe from last week? 👉

name grads fullprof
1 Corey 1 FALSE
2 Angela 0 FALSE
3 Bill 4 TRUE
4 Mary 3 TRUE
5 Jane 2 TRUE
6 Lori 3 TRUE

ifelse() and if_else()
if/else takes one TRUE or FALSE value, but sometimes we want to evaluate
multiple values at once

ifelse() is a vectorized version of if/else that can operator over vectors:

ages <- c(35, 12, 82, 21, 15)
ifelse(ages > 21, "Sell alcohol", "Do not sell alcohol")

[1] "Sell alcohol" "Do not sell alcohol" "Sell alcohol"
[4] "Do not sell alcohol" "Do not sell alcohol"

7 / 54

UNIVERSITY OF WASHINGTON

Lets create a new variable inside uwclinpsych called newgrad that is the
number of grad students each faculty is allowed to take this year

If a faculty has 3+ grad students they aren't allowed to take any, but if they
have 0-2 they are allowed to take up to 2:

uwclinpsych$newgrad <- ifelse(test = uwclinpsych$grads >= 3,
 yes = 0,
 no = 2)
print(uwclinpsych)

name grads fullprof newgrad
1 Corey 1 FALSE 2
2 Angela 0 FALSE 2
3 Bill 4 TRUE 0
4 Mary 3 TRUE 0
5 Jane 2 TRUE 2
6 Lori 3 TRUE 0

8 / 54

UNIVERSITY OF WASHINGTON

if_else() from the dplyr package1 is very similar to base R's ifelse()
except it makes sure the return values are the same type:

mylets <- factor(sample(letters[1:5], 10, replace = TRUE))
print(mylets)

[1] b d d e a d e b e a
Levels: a b d e

ifelse(mylets %in% c("a", "b", "c"), mylets, factor(NA))

[1] 2 NA NA NA 1 NA NA 2 NA 1

dplyr::if_else(mylets %in% c("a", "b", "c"), mylets, factor(NA))

[1] b <NA> <NA> <NA> a <NA> <NA> b <NA> a
Levels: a b d e

[1] The dplyr package is written by Hadley Wickham and is part of the Tidyverse.

9 / 54

http://hadley.nz/
https://www.tidyverse.org/

UNIVERSITY OF WASHINGTON

switch()
switch() operates in much the same way as if/else statements by letting
you select among a list of alternatives given one input value

switch() is useful when you have:

one single test condition
your test condition is character or an integer representing an index within
a list of option
you have 2+ conditions

From help(switch) :

switch(EXPR, ...)

EXPR = an expression evaluating to a number or a character string
... the list of alternatives. If it is intended that EXPR has a character-string
value these will be named, perhaps except for one alternative to be used
as a ‘default’ value.

10 / 54

UNIVERSITY OF WASHINGTON

switch(1,
 "First",
 "Second",
 "Third")

[1] "First"

switch(3,
 "First",
 "Second",
 "Third")

[1] "Third"

switch("this",
 this = "This one!",
 that = "That one!",
 "The other one!")

[1] "This one!"

switch("Not this or that!",
 this = "This one!",
 that = "That one!",
 "The other one!")

[1] "The other one!"

If EXPR is numeric, R will return the list of alternatives corresponding with
that index:

If EXPR is character, R will search the list of alternatives and return the
associated value:

☝ Notice the unnamed argument at the end! This is optional. ☝

11 / 54

UNIVERSITY OF WASHINGTON

Using switch() prevents you from having to write a bunch of if/else
statements (it can also result in faster code, but this is generally negligible):

switch("this",
 this = "This one!",
 that = "That one!",
 "The other one!")

☝ is equivalent to 👇

if(x == "this"){
 "This one!"
} else if(x == "that"){
 "That one!"
} else {
 "The other one!"
}

12 / 54

UNIVERSITY OF WASHINGTON

Loops

13 / 54

UNIVERSITY OF WASHINGTON

Computers are really good at repeating the same task over and over, and loops
are the way to accomplish it

From Wikipedia:

A loop is a sequence of statements which is specified once but
which may be carried out several times in succession. The code
"inside" the loop is obeyed a specified number of times, or once for
each of a collection of items, or until some condition is met, or
indefinitely.''

There are three types of loops in R:

for loops

while loops

repeat loops

14 / 54

https://en.wikipedia.org/wiki/Control_flow#Loops

UNIVERSITY OF WASHINGTON

Bad repetition: Let's say you wanted to take the mean of all columns in the
swiss dataset:

mean1 <- mean(swiss$Fertility)
mean2 <- mean(swiss$Agriculture)
mean3 <- mean(swissExamination)
mean4 <- mean(swiss$Fertility)
mean5 <- mean(swiss$Catholic)
mean5 <- mean(swiss$Infant.Mortality)
c(mean1, mean2 mean3, mean4, mean5, man6)

Can you spot the problems with this code?

How frustrated would you be if swiss had 200 columns instead of 6?

15 / 54

UNIVERSITY OF WASHINGTON

DRY vs. WET Programming
DRY: do not repeat yourself! If you are wriing the the same code over several
lines, there's probably a more efficient way to write it

WET:

write every time
write everything twice
we enjoy typing
waste everyone's time

Writing DRY code reduces risk of making typos in your code, substantially
reduces the time and effort involves in processing large volumes of data, and
is more readable and easier to troubleshoot

16 / 54

UNIVERSITY OF WASHINGTON

for Loop
for loops iterate over a vector of values (any atomic type!) and execute
instructions (R code) after each iteration

In English: "for each of these values, in this order, execute this set of
instructions"

General structure of a for loop:

for(var in seq){
 expr
}

var is an index variable that holds the current value in seq (You can call
this whatever you want! In most cases it is custom to call it i but there are
meaningful exceptions to this)
seq is a vector of values that you want to iterate over
expr is the R code you want to run for each iteration

17 / 54

UNIVERSITY OF WASHINGTON

for Loop: Diagram
Given a set of values:

Set i to
first value

Exit
Loop

YES

NO

Set i to
next
value

Run code
using i

Are there
more i
values?

"Inside" of Loop

18 / 54

UNIVERSITY OF WASHINGTON

for(i in 1:10){
 print(i^2)
}

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25
[1] 36
[1] 49
[1] 64
[1] 81
[1] 100

same as 👉

i <- 1
print(i^2)

[1] 1

i <- 2
print(i^2)

[1] 4

i <- 3
print(i^2)

[1] 9

and so on...

for Loop Example

19 / 54

UNIVERSITY OF WASHINGTON

You can have for loops inside of
for loops inside of for loops inside
of...

for(i in 1:5){
 for(j in 1:5){
 print(i + j)
 }
}

How many times will print()
be called?
What is the first, second, and
third output going to be?

2 (i=1 j=1)
3 (i=1 j=2)
4 (i=1 j=3)
5 (i=1 j=4)
6 (i=1 j=5)
3 (i=2 j=1)
4 (i=2 j=2)
5 (i=2 j=3)
6 (i=2 j=4)
7 (i=2 j=5)
4 (i=3 j=1)
5 (i=3 j=2)
6 (i=3 j=3)
7 (i=3 j=4)
8 (i=3 j=5)

and so on...

Nested for Loops

20 / 54

UNIVERSITY OF WASHINGTON

There's no limit to how nested you can get1:

for(i in 1:10){
 for(j in 50:70){
 for(k in letters){
 for(l in LETTERS){
 for(m in -5:5){
 print(paste(i, j, k, l, m))
 }
 }
 }
 }
}

[1] "1 50 a A -5"
[1] "1 50 a A -4"
[1] "1 50 a A -3"
[1] "1 50 a A -2"

and so on...
[1] There are limits to the computational power you have and to how readable your
code is, however. Before using a nested for loop, ask yourself if there is a more simple
and efficient way of doing what you want

21 / 54

UNIVERSITY OF WASHINGTON

for Loop Conventions
We call what happens in the loop for one particular value one iteration

While you can iterate over any vector, iterating over indices 1:n is very
common. n might be the length of a vector, the number of rows or
columns in a dataframes, or the number of elements in a list

Common notation: i is the object that holds the current value inside the
loop

If loops are nested (one loop inside the other), you will often see j
and k used for the inner loops

This notation is similar to indexing in mathematical symbols (e.g.,)

i (and j , k , etc.) are just normal objects. You can use any name you want
(e.g., row when iterating down rows of a dataframe)

n

∑
i=1

22 / 54

UNIVERSITY OF WASHINGTON

Iterating Over Characters
You don't have to iterate over a numeric vector (although this is most
common). You can also iterate over a character vector!

faculty <- c("Corey", "Angela", "Bill", "Mary", "Jane", "Lori")
for(name in faculty){
 print(name)
}

[1] "Corey"
[1] "Angela"
[1] "Bill"
[1] "Mary"
[1] "Jane"
[1] "Lori"

Warning: the last value of var (in this case name) continues to exist outside of
the loop. You should never name var the name of another object.

print(name)

[1] "Lori"

23 / 54

UNIVERSITY OF WASHINGTON

Pre-allocation
Usually in a for loop you are not just printing output, but want to store results
from calculations in each iteration somewhere

To do that, figure out what you want to store and pre-allocate an object of the
right size as a placeholder (typically filled with NA)

results <- rep(NA_real_, 10000) # Vectors with 10,000 NAs (numeric)

for(i in 1:10000){
 results[i] <- i + i^2 + i^3
}
head(results)

[1] 3 14 39 84 155 258

Check if there are any NAs still in results
any(is.na(results))

[1] FALSE

24 / 54

UNIVERSITY OF WASHINGTON

You don't need to pre-allocate a vector. Instead you can instantiate (i.e., create)
an empty vector and fill it in as you go:

results <- c()

for(i in 1:10000){
 results[i] <- i + i^2 + i^3
}
head(results)

[1] 3 14 39 84 155 258

You can also use the append() function to add values to the end (or the
after th value) of the vector1

for(i in 1:10000){
 results <- append(results, i + i^2 + i^3)
}

[1] See ?append to learn more about the function

25 / 54

UNIVERSITY OF WASHINGTON

Warning: Although it likely won't make much of a difference for you, pre-
allocating a vector is substantially faster than filling in an empty vector

Let's see how long it takes for R to fill in 100 million values in an empty and a
pre-allocated vector

n <- 100000000

system.time({
 vec <- rep(NA_real_, n)

 for(i in 1:n){
 vec[i] <- i
 }
})

user system elapsed
5.405 0.248 5.654

system.time({
 vec <- c()

 for(i in 1:n){
 vec[i] <- i
 }
})

user system elapsed
26.658 2.496 29.156

26 / 54

UNIVERSITY OF WASHINGTON

setNames()
Using the setNames() function, you can pre-allocate a named vector:

vec <- setNames(object = rep(NA_real_, 10), # vector
 nm = paste0("elem", 1:10)) # names

print(vec)

elem1 elem2 elem3 elem4 elem5 elem6 elem7 elem8 elem9 el
NA NA NA NA NA NA NA NA NA

27 / 54

UNIVERSITY OF WASHINGTON

Debugging for Loops
Let's say we want to take the mean across all columns in the swiss dataset:

swissmeans <- c()

for(i in 1:ncol(swiss)){ # vector 1, 2, 3,... ncols in swiss
 swissmeans[i] <- mean(swiss[, i], na.rm = T)
}

☝ This warning tells us that our call to mean() didn't work for one iteration,
but we don't know which iteration. Understanding warnings and errors inside
loops becomes even more challening when you have a lot of instructions
inside the loop!

Warning in mean.default(swiss[, i], na.rm = T): argument is not n
logical: returning NA

28 / 54

UNIVERSITY OF WASHINGTON

One way to debug a for loop is to simulate every iteration of the loop
yourself. In this case, this would look like:

i <- 1 # set i manually
mean(swiss[, i], na.rm = T) # run suspect code

[1] 70.14255

i <- 2 # increment i manually
mean(swiss[, i], na.rm = T) # run suspect code

[1] 50.65957

This is very time consuming, especially when you have many iterations and/or
lots of R code to execute

29 / 54

UNIVERSITY OF WASHINGTON

Debug with print() and Sys.sleep()
Instead of running through the loop manually, use print() to print the current iteration and any
variables you think might be responsible for the bug

Use Sys.sleep() if you want to slow the loop down during debugging to give you more time to
process what's happening:

for(i in 1:ncol(swiss)){
 print(i)
 print(colnames(swiss)[i])
 swissmeans[i] <- mean(swiss[, i])
 Sys.sleep(1) # Wait 1s before next interation
}

30 / 54

UNIVERSITY OF WASHINGTON

Example: LOOCV
Leave-one-out cross-validation (LOOCV) is a method used to evaluate how well
a model will predict a new observation (i.e., not an observation in the
"training" data, which is characterized by the residual term)

To perform LOOCV:

1. Remove one observation from the data
2. Fit your model
3. See how well the model predicts the removed observation
4. Repeat with a newly removed observation for n observations

Simulate data for example:

set.seed(98195)
n <- 300

tibbles are like dataframes (we will cover them later this quarter)
dat_sim <- tibble(x = rnorm(n, mean = 5, sd = 4),
 z = x + rnorm(n, mean = 0, sd = 10),
 y = 2 + (-0.5*x) + (.5*x^2) + (-0.5*z) + rnorm(n))

31 / 54

UNIVERSITY OF WASHINGTON

Visualizing dat_sim

32 / 54

UNIVERSITY OF WASHINGTON

Empty column to hold the results
dat_sim$ypred <- rep(NA_real_, nrow(dat_sim))

Conduct LOOCV
for(i in 1:nrow(dat_sim)){
 # Estimate linear model
 fit <- lm(y ~ x + I(x^2) + z,
 data = dat_sim[-i,]) # Remove ith row of dat_sim

 # Predict y of removed observation
 # (equivalent to just plugging in the numbers ourselves)
 dat_sim$ypred[i] <- predict(fit, newdata = dat_sim[i, c("x", "z")])
}

head(dat_sim)

A tibble: 6 x 4
x z y ypred
<dbl> <dbl> <dbl> <dbl>
1 1.41 15.8 -6.03 -5.39
2 10.8 5.41 51.7 51.7
3 7.12 12.8 17.2 17.4
4 9.99 5.36 44.6 44.1
5 10.5 17.8 42.1 42.8
6 4.48 6.83 5.67 6.41

33 / 54

UNIVERSITY OF WASHINGTON

By definition, the residuals from lm() will be smaller than from LOOCV on the
same dataset. Let's check to make sure this is true:

lm()
pred_lm <- predict(lm(y ~ x + I(x^2) + z,
 data = dat_sim))

mean((pred_lm - dat_sim$y)^2)

[1] 1.062459

LOOCV
mean((dat_sim$ypred - dat_sim$y)^2)

[1] 1.093004

34 / 54

UNIVERSITY OF WASHINGTON

Example: K-Fold Cross Validation
K-fold cross validation involves running your model on random subsets of
your data and using the remaining data to estimate how well the model
performed

LOOCV is a form of k-fold cross validation where K is the number of rows

1. Split your data into K folds
2. For each fold :

Fit the model to all the data except that in fold i
Make predictions for the omitted data in fold i

3. Calculate accuracy (mean squared erro or however you'd like)

A model that fits well has a lower mean squared error

i = 1, . . . , K

35 / 54

UNIVERSITY OF WASHINGTON

Fold 1
Predictions

Predicted Y

Iteration 1

(1) Model Y~X
Using Folds 2-5

(2) Predict Y
with X in Fold 1

Fold 1
Rows

Fold 2
Rows

Fold 3
Rows

Fold 4
Rows

Fold 5
Rows

Real Y, X

Pre-Allocated
Space

Pre-Allocated
Space

Pre-Allocated
Space

Pre-Allocated
Space

36 / 54

UNIVERSITY OF WASHINGTON

Fold 1
Predictions

Fold 2
Predictions

Fold 3
Predictions

Fold 4
Predictions

Fold 5
Predictions

Predicted Y

Iteration 5

(1) Model Y~X
Using Folds 1-4

(2) Predict Y
with X in Fold 5

Fold 1
Rows

Fold 2
Rows

Fold 3
Rows

Fold 4
Rows

Fold 5
Rows

Real Y, X

37 / 54

UNIVERSITY OF WASHINGTON

Let's simulate some fake data for this using the rnorm() function to generate
random values from a normal distribution.

set.seed(98195)
n <- 300
dat_sim <- tibble(x = rnorm(n, mean = 5, sd = 4),
 y = -0.5 * x + 0.05 * x^2 + rnorm(n, sd = 1))

This generates a dataframe of 300 observations where y is dependent on x ,
with some uncorrelated, normally-distributed residual (from rnorm()).

38 / 54

UNIVERSITY OF WASHINGTON

Candidate Regression Models
Let's say we want to consider several different regression models to draw
trendlines through these data:

Intercept Only: draw a horizontal line that best fits the y values.

Linear Model: draw a line that best fits the y values as a function of x .

Quadratic Model: draw a quadratic curve that best summarizes the y
values as a function of x .

Cubic Model: draw a cubic curve that best summarizes the y values as a
function of x .

ŷ i = β0

ŷ i = β0 + β1xi

ŷ i = β0 + β1xi + β2x2
i

ŷ i = β0 + β1xi + β2x2
i

+ β3x3
i

39 / 54

UNIVERSITY OF WASHINGTON

Pre-Allocating for CV
Let's make a named character vector for the formulas we'll use in lm() :

models <- c("intercept only" = "y ~ 1",
 "linear" = "y ~ x",
 "quadratic" = "y ~ x + I(x^2)",
 "cubic" = "y ~ x + I(x^2) + I(x^3)")

Let's also split the data into folds. We will make a new dataframe to hold the data and sampled
fold numbers that we'll add predictions to later.

K <- 10
CV_pred <- dat_sim
CV_pred$fold <- sample(rep(1:K, length.out = nrow(CV_pred)),
 replace = FALSE)
CV_pred[, names(models)] <- NA_real_
head(CV_pred)

x y fold intercept only linear quadratic cubic
1 1.410985 0.8298248 6 NA NA NA NA
2 10.762657 -0.1251665 9 NA NA NA NA
3 7.120262 -0.4582323 8 NA NA NA NA
4 9.989839 -0.4680869 7 NA NA NA NA
5 10.493456 0.9938052 8 NA NA NA NA
6 4.480082 -1.0018591 7 NA NA NA NA

K = 10

40 / 54

UNIVERSITY OF WASHINGTON

Double-Looping for CV
Next, let's loop over each model (mod), and within each model loop over each
fold (k) to fit the model and make predictions.

Note the models are fit without the fold rows, but prediction is done on only
the left-out fold rows.

for(mod in names(models)) {
 for(k in 1:K) {

 # Fit model to data not in fold
 fit <- lm(formula(models[mod]),
 data = CV_pred[CV_pred$fold != k,])

 # Predict on data in fold
 CV_pred[CV_pred$fold == k, mod] <- predict(fit, newdata = CV_pred[CV_pred$f
 }
}

41 / 54

UNIVERSITY OF WASHINGTON

Which Model Fit Best?
Let's write another loop to compute the mean squared error of these CV
predictions

The squared error is equal to the difference between the observed values and
predicted values squared. The MSE is the mean of all the squared errors of
each prediction.

CV_MSE <- setNames(numeric(length(models)), names(models))
for(mod in names(models)) {
 pred_sq_error <- (CV_pred$y - CV_pred[[mod]])^2
 CV_MSE[mod] <- mean(pred_sq_error)
}
print(CV_MSE)

intercept only linear quadratic cubic
2.196284 2.164999 1.060667 1.070219

Based on these results, which model would you choose?

42 / 54

UNIVERSITY OF WASHINGTON

cond is a logical statement that
evaluates to TRUE /FALSE
expr is the R code you want to
run iteratively

while Loop
while loops repeat a set of instructions (R code) while a certain condition is
met

while(cond){
 expr
}

43 / 54

UNIVERSITY OF WASHINGTON

while Loop
Initialize x
x <- 0

while(x < 10){
 # Incremement x
 x <- x + 2

 print(x)
}

[1] 2
[1] 4
[1] 6
[1] 8
[1] 10

Notice that, unlike the for loop, we don't necessarily know how long the
while loop will run. This is exactly when a while loop is preferred!

44 / 54

UNIVERSITY OF WASHINGTON

count <- 0
number <- 32
while(number > 1){
 print(number)
 number <- number / 2
 count <- count + 1
}

[1] 32
[1] 16
[1] 8
[1] 4
[1] 2

print(paste(count, "times!"))

[1] "5 times!"

count <- 0
number <- 908345903485304
while(number > 1){
 print(number)
 number <- number / 2
 count <- count + 1
}

[1] 9.083459e+14
[1] 4.54173e+14
[1] 2.270865e+14
[1] 1.135432e+14
...

print(paste(count, "times!"))

[1] "50 times!"

while Loop: Example
Let's say we want to know how much times a number can be cut in half until it
is less than or equal to 1:

45 / 54

UNIVERSITY OF WASHINGTON

while Loops: A Warning
Be careful when writing a while loop to make sure the condition will be met
eventually!

This will run forever:

while(TRUE){
 print(😭)
}

😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭
😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭
😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭
😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭
😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭
😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭
😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭
😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭
😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭😭...

46 / 54

UNIVERSITY OF WASHINGTON

repeat {
 expr
 if(condition){
 break
 }
}

Warning: even more so than the
while loop, a repeat loop will run
forever until you tell it to stop!

To stop the loop, use the break
statement

repeat Loop
repeat loops repeat a set of instructions until a certain condition is met

repeat loops differ from while loops because the condition is evaluated at
the end (rather than the begining) of the loop

47 / 54

UNIVERSITY OF WASHINGTON

repeat Loop: Example
Using a repeat loop, find the factorial of a given number (the product of all
integers from 1 to number)

Initialize objects
number <- 30
i <- 2 # counter
res <- 1 # holds result

repeat{

 res <- res*i

 # If 1*2*3...n, stop
 if(i == number){
 break
 }

 # Increment counter
 i <- i + 1
}

print(res)

[1] 2.652529e+32

48 / 54

UNIVERSITY OF WASHINGTON

for(i in 1:15){
 # Notice that the entire if()
 # statement is on one line.
 # This is okay when it is
 # simple like this
 if(i %in% 6:10) next
 print(i)
}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 11
[1] 12
[1] 13
[1] 14
[1] 15

i <- 0
while(i < 15){
 i <- i + 1
 if(i %in% 6:10) next
 print(i)
}

i <- 0
repeat{
 i <- i + 1
 if(i %in% 6:10) next
 print(i)
 if(i == 15) break
}

next
next allows you to immediately skip to the next iteration of a loop without
executing the code below. You can use this in all three types of loops!

49 / 54

UNIVERSITY OF WASHINGTON

Vectorization

50 / 54

UNIVERSITY OF WASHINGTON

Create vector of 100,000,000 0s and 1s
vec <- sample(0:1, 100000000, TRUE)

system.time(
 for(i in 1:length(vec)){
 vec[i] <- 1 - vec[i]
 }
)

user system elapsed
6.897 0.376 7.273

👈 This takes forever!

What is Vectorization?
One of the many things that makes R a unique and useful language for
working with data is the concept of vectorization

Consider a simple data cleaning problem where you need to convert all 0s to
1s and all 1s to 0s (e.g., to change the reference group in your linear model). To
do this, all you need to do is subtract each observation from 1. But what if you
have hundreds, thousands, or even millions of observations?

Good thing we just learned about loops!

51 / 54

UNIVERSITY OF WASHINGTON

system.time(

 1 - vec

)

user system elapsed
0.310 0.208 0.518

system.time(
 for(i in 1:length(vec)){
 vec[i] <- 1 - vec[i]
 }
)

user system elapsed
8.308 0.280 8.592

Vectorization Wins
Instead of using a loop to do this task, we can use R's vector addition, which is
a vectorized function

52 / 54

UNIVERSITY OF WASHINGTON

Vectorization Examples
rowSums() , colSums() , rowMeans() , colMeans() return a vector of sums
or means over rows or columns of data (these are very useful for constructing
scale scores!)

my_matrix <- matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE)
print(my_matrix)

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

rowSums(my_matrix)

[1] 10 26 42

53 / 54

UNIVERSITY OF WASHINGTON

More Vectorization Examples
cumsum() , cumprod() , cummin() , cummax() return a vector of cumulative
quantities

cumsum(1:10)

[1] 1 3 6 10 15 21 28 36 45 55

cummin(c(3:1, 2:0, 4:2))

[1] 3 2 1 1 1 0 0 0 0

pmax() and pmin() take a matrix or set of vectors and return the min or max for
each position (after recycling)

pmax(c(0, 3, 4),
 c(1, 1, 1),
 c(2, 2, 2))

[1] 2 3 4

54 / 54

